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GENERALIZED FROBENIUS GROUPS

BY
DAVID CHILLAG AND 1. D. MACDONALD

ABSTRACT
A pair (G, K) in which G is a finite group and K < G, 1 < K < G, is said to satisfy
(F2) if |[Cs(x)|=|Cg/x (xK)| for all x € G\K. First we survey all the examples
known to us of such pairs in which G is neither a p-group nor a Frobenius group
with Frobenius kernel K. Then we show that under certain restrictions these are,
essentially, all the possible examples.

1. Introduction

For our purpose, the most pertinent definition of Alan Camina’s generaliza-
tion of Frobenius groups is:

(F2) the group G has a normal subgroup K, 1 < K < G, such that if x € G\K
and z €K, then [x,y] =z for some y € G.

See [1]. All groups in this paper will be finite.

In [1] Camina presents two main results. One is a character-theoretic
equivalent (F1) of (F2), which is not to be used in this paper. His other principal
result states that if (G, K) has (F2){that is G satisfies (F2) with respect to the
normal subgroup K) then either K is a p-group or G/K is a p-group or else G is
a Frobenius group with a Frobenius kernel K.

Knowledge of the p-groups with (F2) is meager. Most of it is contained in [4].
In particular, examples not of class 2 are few. All known examples are of class 2
or 3 or else have K = Z(G), the center of G.

Nevertheless, one might hope for some description of the pairs (G, K) which
have (F2) in terms of two seemingly basic components — the Frobenius groups,
and the (F2)-pairs (G, K) in which G is a p-group. That is the problem to which
we address ourselves in this paper.

What results should one seek to prove? In §2, we survey the examples known
to us. In what we shall call F2-pairs (G, K) of type 1, in which G/K is a p-group,
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we have examples (with p =2) derived from those Frobenius groups having
Frobenius complement isomorphic to the quaternion group of order 8. A
reasonable conjecture would be that (G, K) of type I, are just like this — that there
are no others.

Pairs of type II have K a p-group. Here the structure is more diversified.
Clearly, the Sylow p-subgroup p of G must play an essential role. If (G, K) is an
F2-pair of type IL, it is not true that (G, P) must have (F2), though it may well be
true that P is always normal in G. It might be conjectured that (P, K) must have
(F2). It is easy to show (see Lemma (4.2)), that if P is normal in G then (P, K)
does indeed have (F2).

We succeeded in proving the above conjectures only under the additional
conditions that G is p-solvable and P has nilpotency class less than or equal to 2.
We can prove the conjectures also in the case that K is cyclic. These partial
answers to the conjectures are consequences of Theorem 4.1, Theorem 5.1 and
Lemma 5.3. We feel, however, that these partial results together with our
examples are useful in directing attention to the general problem.

Before stating one of the results we introduce some notation. Let p be a
prime. We say that a pair (G, K) has F2(p) if (G, K) has (F2) with either G/K or
K a p-group, but G is neither a p-group nor a Frobenius group with Frobenius
kernel K. By Camina’s theorem if (G, K) has (F2) and G is neither a p-group nor
a Frobenius group with kernel K, then (G, K) has F2(q) for some prime q. We
denote by Qy the quaternion group of order 8. The rest of our notation is
standard.

The following theorem is a consequence of Theorem 4.1, Theorem 5.1 and
Lemma 5.3.

THEOREM. Let (G, K) have F2(p) for some prime p. Suppose that either K is
cyclic, or G is p-solvable with a Sylow p-subgroup of nilpotency class at most 2.
Then one of the following holds:

() p =2, G is a Frobenius group with a Frobenius kernel N with |K : N|=2
and a Frobenius complement isomorphic to Qs.

(ii) If P is a Sylow p-subgroup of G, then p < G and (P, K) has (F2). Further,
G is a semidirect product G = HP and HK is a Frobenius group with Frobenius
kernel K.

For pair (G, K) that has F2(p) with K a p-group, some other conditions imply
(i1), see section 4. If G/K is a p-group in the theorem with the Sylow p-subgroup
of G having nilpotency class equal to 2, then it can be shown that (i) holds
without assuming p-solvability (see Theorem 5.1). Also if (G, K) has F2 with
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G/K a p-group, p# 2, and the nilpotency class of a Sylow p-subgroup of G is
equal to 3, it can be proved that G has a normal p-complement. See Theorem
5.5.

2. Survey of examples

In this section we describe the examples known (to us) of pairs (G, K) that
have F2(p). Camina states that he knows of only one example. It has |G | =72
and | G/K | = 4; see the remarks following his theorem 2 in [1]. However, it is
easy to see that any Frobenius group with Frobenius complement isomorphic to
Qs gives similar examples with |G/K|=4.

Lemma 2.1. If (G,N) and (G/N,K/N) have (F2) then (G,K) has (F2).

ProofF. Let x € G\K and z € K. By assumption there exists y; € G and
n € N such that [x, y,] = zn. Also, there exists y, € G such that [x, y.] = n "'
Then:

[xyy:] =[x yillx yl = zn-(n ) =2,
as required.

ExaMpPLE 1. Let G be a Frobenius group with Frobenius kernel N and
G/N = Q. Let K be the subgroup of index 4 in G. Both (G,N) and
(G/N,K/N) have (F2). So by Lemma 2.1 (G, K) has (F2). The example is
(G, K). There are of course many possibilities for N. We can have N =Z, XZ,
where p is an odd prime with integers a, 8 satisfying a’+ B°+1=0 (mod p)
and generators of Qs acting on N according to the matrices (-] o), (5 _5).
Camina’s example of order 72 is the same with p =3.

We know of no further examples of pairs (G, K) having F2(p) in which G/K is
a p-group. The situation is different with regard to pairs in which K is a p-group.
The following simple lemma is illuminating.

LEMMA 2.2. Let G = PT where P, T are subgroups of G with Z(P)=K <G
and K = T. If (P,K) has (F2) and if T is a Frobenius group with Frobenius kernel
K then (G, K) has (F2).

Proor. Take x € G\K and z € K. We have x = x;x, with x, EP, x, € T. If
x; €K, then x EP and [x,y] = z for some y € P as (P, K) has (F2). So we may
take x,€ T\K. Since T is a Frobenius group with Frobenius kernel K, x,
induces a regular automorphism of K. So [x;, k] =z for some k € K. Then
[x,k]=z as [x,k}=1.



114 D. CHILLAG AND I. D. MACDONALD Isr. J. Math.

ExampLe 2. Let P ={(a, b) be a non-abelian of order 7" of exponent 7 and let
H, ={x) of order 3. We construct the example G = PH, with P < G by having
a* =a’ b* = b’ Note that P'=Z(P)={c), ¢ =[a,b], c* =c* ([2] p. 19) and
that {(c,x) = H is a Frobenius group with Frobenius kernel K ={(c). Trivially
(P, K) has (F2). So by Lemma 2.2 (G, K) has (F2). We even have G a Frobenius
group with Frobenius kernel P.

Many variations on Example 2 are possible. The primes 3, 7, can be changed,
P can be replaced by some more complicated group such as those described in
[41, etc.

ExaMpLE 3. Let p be an odd prime and let 8 be a primitive (p — 1)p”-th root
of unity modulo p"*' (n=1). Example 3 is G =(a,b|a”" =bp*"" =1,
a’® = a®), the holomorph of the cyclic group of order p™*'. We put

P=(a,b"™"), K=(a""), H=(a",b").

The requirements of Lemma 2.2 are satisfied, for (P, K) is a stock example of a
p-group with (F2) (see introduction of [4]) and H is a standard Frobenius group
with kernel K. Also, K = Z(P)< G. Therefore, (G, K) has F2(p). In this
example we have that P < G without (G, P) having (F2) (unlike Example 2).
Note that the Frobenius complement (b”") of H even centralizes the nontrivial
subgroup (b*7'") of P.

ExamrLE 4. We start with P =(ay, a;, a;, as), a group of class 2 and expo-
nent 3 with K=G'=Z(G)=(c,d), |G:K|=3% |K|=3? having the com-
mutator relations: [a;, a:] =1, [ay, as] = ¢, [a1, as] = d, [az,a;] =d 7', [az,ad] = ¢,
[as, a.] = 1. The criterion of theorem 3.1 of {4] easily establishes that (P, K) has
(F2). Example 4 is to be G = PQ where Q ={a, 8 |a’=B?=(aB)’)= Qs. We
shall have P < G once we have stated how Q acts on P. The action of « is given
by: a,—a3', a.— ai, as— a5', as—> ai'. It can be checked that automorphism
a of P is defined thereby, and that « acts on K as follows: ¢ — d',d—c The
action of B is given by: a;— a.a;', a:—>ai'a;', a:— as’, a.—> a., from which it
follows that ¢ — ¢ 'd ™", d = ¢ "'d. It can be verified also that a® = 8 = (aB)".

Then KQ is a Frobenius group with kernel K (KQ is in fact Camina’s
example of order 72). So by Lemma 2.2 (G, K) has (F2).

Example 4 incorporates most of the discouraging features of Example 3, and
then some more. We have P < G but (G, P) does not have (F2). We have K
noncyclic. We have the Frobenius complement Q of KQ acting on P with
nontrivial fixed points. Note that G/P is noncyclic in this case. The only role that
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Q: plays here is as a Frobenius complement; we do not use the fact that
(Q, Z(Q)) has (F2). It may be claimed that Example 4 is reasonably complicated.

We know of no examples of pair (G, K) having F2(p) with K a p-group, that is
not described by Lemma 2.2.

3. Some general preliminary results

ProrosiTION 3.1.  Let G be a group with normal subgroup K, 1 < K < G. Then
the following conditions on (G, K) are equivalent.

(a) (G,K) has (F2).

(b) If g€ G\K and h € K then g is conjugate in G to gh.

(¢) If x EG\K, then |Cs(x)| =|Cos/x (xK)|.

(d) If aK and bK are conjugate in G/K and are nontrivial then a and b are
conjugate in G.

(e) If X is an irreducible character of G with KZ Ker X, then X(x) =0 for all
x € G\K.

PrOOF. The equivalence of (a) and (b) is trivial and that of (c) and (e) follows
the proof of corollary (2.24) of [3]. To show that (a) and (c) are equivalent let

Cs(a,K)=(x €EG |[a,x] EK), foralla€G\K.

The following statements are equivalent for any x;, x, € Cs (a, K): (i) [a, x,] =
[a,x2); (i) [a, xx:"]=1; (iii)) Cs(a)x,= Cs(a)x,. So, there is a one-to-one
correspondence between {Cs(a)x Ix € Cs(a,K)} and the subset of K
{la,x]| x € Cs(a,K)}. Hence |Cs(a,K): Cs (a)|=|K| and equality occurs if
and only if for all k € K there exists x € G with [a, x] = k. Thus, equality occurs
for all a € G\K if and only if (G, K) has (F2). As Cs/x (aK) = C;(a, K)/K, the
equivalence of (a) and (c) is established. To see that (a) implies (d) see the proof
of lemma 1 of [1]. Finally if (d) holds and a € G\K, z €K then aK = azK
implies that a is conjugate to az which is statement (b).

We note that other character-theoretic conditions equivalent to the above can
be found in [1], explicitly in Theorem 1 and implicitly in its proof. Next we
generalize Camina’s necessary and sufficient condition for an (F2)-pair (G, K) to
be G, a Frobenius group with Frobenius kernel K.

ProposITION 3.2, Let (G, K) have (F2). Then G is a Frobenius group with
Frobenius kernel K if and only if G splits over K.

ProoF. To prove the non-trivial part we suppose that (G, K) has (F2) and
that G = HK with HNK =1. Take x € H and z € K. By (F2) there exists
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y € G with [x,y] = 2. Write y = y,y, where y, € H, y,€ K. Then z =[x,y] =
[x, yiy2] =[x, y21[%, y1]>. As K <G we get that [x,y.] € K so that [x,y,]€E K.
But x € H, y, € H. So [x,y,]€ HN K =1 and consequently [x, y.] =z, y. €K
Thus

{x.g]|gEK}=K forall x € G\K.

So [x,g] #1 for x € G\K and g € K\1. This implies that H acts fixed-point-
freely on K and the proposition follows.

CoOROLLARY 3.3 (Camina [1], proposition 1). Let (G, K) have (F2). Then G is
a Frobenius group with Frobenius kernel K if and only if (|G/K|,|K|)=1.

Proof. Follows from Proposition 3.2 and the Schur-Zassenhaus Theorem.

ProrosiTiON 3.4. Let (G, K) have F2(p) for some prime p and let P be any
Sylow p-subgroup of G. Then Z(P)= K.

Proor. By Corollary 3.3, |K|,# 1. Let x € Z(P) and assume that x& K.
Then the number of conjugates of x is a multiple of | K | (by Proposition 3.1, (b))
and so |Cs(x)| divides |G/K|. It follows that |P|=|Cs(x)|, divides
|Gl,/IK|, <|{P|, a contradiction.

CoroLLARY 3.5. If (G,K) has F2(p) for some prime p and P is a Sylow
p-subgroup of G, then P is not abelian.

Proor. Follows from the previous proposition and the fact that p divides
(|GIK],|K]).

LemMA 3.6. Let the pair (G, K) have F2 and let G = HK. Then (H, H N K)
has F2.

PrOOF. Let aEH\K Then |CH(G)I§ICG((1)|='CG/K(aK)|=
| Crmnx (@(H N K))| £ | Cu(a)]. Thus |Cu(a)l =|Cuunx(a(H N K))| and the
lemma follows.

4. F2(P)-pairs with K a p-group

In this section we assume that (G, K) has F2(p) for some prime p. All the
examples known to us have the structure described by Lemma 2.2. Our main
result in this section is a theorem giving necessary conditions for a Sylow
p-subgroup of G to be normal in G and for G to have a structure like in Lemma
22.
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THEOREM 4.1. Let (G, K) have F2(p) with K a p-group, for some prime p. Let
P be a Sylow p-subgroup of G. Assume that one of the following conditions holds:

(i) G is p-solvable and P/K is abelian.

(i) G is p-solvable and the nilpotency class of P is at most 2.

(iii) K is cyclic.
Then P < G and (P, K) have (F2). Further, G is a semidirect product G = HP
and HK is a Frobenius group with Frobenius kernel K. Also in case (ii) we have
K = Z(P).

The proof will be given following a series of lemmas.

LemMmA 4.2. Let (G, K) have F2(p) with K a p-group, for some prime p. Let
P €Syl (G). If P <G, then (P,K) has (F2).

Proor. Let x € P\K. By Proposition 3.1, (c), it suffices to show that
|Ceix (xK)| =|Cr(x)|. As P<IG we get that PN Cs(x) € Syl, (Cs(x)) and
(P/K)N Cgx (xK) € Syl, (Coix (xK)). Now the (F2)-property implies that
| Co (x)]p = Cox (xK), and so |Co ()|, =|P N Co(x)|=]Cr(x)| =
| Co/x (xK) |, = |(P/K)N Co/x (xK)| = | Crx (xK)|, as needed.

LEMMA 4.3. Let (G, K) have F2(p) with K a p-group, for some prime p. If T is
any p'-subgroup of G then TK is a Frobenius group with Frobenius kernel K and
complement T. In particular every Sylow subgroup of T is either cyclic or
generalized quaternion.

Proor. Let x €T and g € K, g# 1. By Proposition 3.1, (b), x and xg have
the same order and so [x, g] # 1. Therefore, T acts fixed-point-freely on K and
the lemma follows.

LEmMma 44. Let (G, K) have F2(p) with K a p-group, for some prime p. Then
0,{(G/K)=1.

PROOF. Assume the contrary and let L/K be a minimal normal subgroup of
G/K with L/KC O,(G/K). As (|[L/K|[,|K|)=1, L splits over K so that
L = VK for some subgroup V. Also VN K =1. Hence V=L/K is a p'-
subgroup of G. By Lemma 4.3 all the Sylow subgroups of G are either cyclic or
generalized quaternion and hence V is solvable (by the Suzuki-Brauer
theorem). So V = L/K is a q-group for some prime g # p. In fact V € Syl, (L).
As L <G, the Frattini argument yields that G = Ng(V)L = Ng(V)K.

By Lemma 4.3, VK is a Frobenius group with Frobenius kernel K and
complement V. In particular V# V* for all g €K and so K N N (V)=1. We
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conclude that G = Ng (V)K splits over K. Now Proposition 3.2 implies that
(G, K) does not have F2(P) (although it has (F2)), a contradiction.

LemMa 4.5. Let (G, K) have F2(p) with K a p-group, for some prime p. Let
P €Syl,(G). If P*# P’ for some x, y € G, then Z(P*)NZ(P*)=1.

PROOF. Assume the contrary and let 1#z € Z(P*)NZ(P’). Then z €
Z((P*, P’))N K, by Proposition 3.4. As P*# P*,(P*, P*) is not a p-group. Let T
be any p'-subgroup of (P, P”). Then T centralizes z € K, contradicting Lemma
4.3.

PrOOF OF THEOREM 4.1. It suffices to show that P <1 G. For if P <1 G, G splits
over P sothat G=HP, HNP =1 and H is a p’-subgroup. Then the theorem
follows from Lemma 4.2, Lemma 4.3 and lemma 2.1 of [4].

Assume that G is p-solvable, then G/K is p-solvable and as O, (G/K) =1 (by
Lemma 4.4) we get that Cs,x (O, (G/K)) = O, (G/K) (by the Hall-Higman 1.2.3
Lemma).

To prove that P<{G in case (i) we note that if P/K is abelian then:
O,(G/K)=P/K = C6x(0,(G/K))= O,(G/K). Hence, O,(G/K)=P/K<«
G/K forcing P <1 G.

If (ii) holds, then P/K is abelian as Z(P)C K (by Proposition 3.4). Thus,
P <G by (i)

Finally assume that (iii) holds, that is, K is cyclic. Let x € G. If P* # P, then by
Lemma 4.5 Z(P)N Z(P*)=1 and by Proposition 3.4 (Z(P), Z(P*)) C K, con-
tradicting the fact that K is a cyclic p-group. Hence P = P* and P < G.

5. F2(p)-groups with G/K a p-group

In this section we prove the following theorem which, together with Theorem
4.1 and Lemma 5.3, yields a proof to the Theorem stated in the introduction.

THEOREM 5.1. Let (G, K) have F2(p) with G/K a p-group, for some prime p.
If a Sylow p-subgroup of G has class at most 2, then G is a Frobenius group, the
Frobenius kernel has index 2 in K and the Frobenius complement is isomorphic to
Qs. In particular p =2 and |G/K|=4.

In our first lemma we prove part of Theorem 5.1.

LEMMA 5.2. Suppose that (G, K) satisfies the assumptions of Theorem 5.1.
Then (a) G has a normal p-complement and (b) p =2 and |G/K|=4.

Proor. Let P €Syl,(G) and Q = P N K. By Corollary 3.5, the nilpotency
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class of P is equal to 2. As G = KP, Lemma 3.6 implies that (P, Q) has F2 and
using [4] we get that Q = Z(P). Also,

0) PPNK=2Z(P*) for all g G.

(a) By the Frattini argument G = HK, where H = N (Q). Applying Lemma
3.6 again yields that (H, H N K) has F2. Let C=Cs(Q). Then P=C<H. If
a€HNK and x €P - HNK, the F2-property of (H, H N K) implies that

=[x, h] for some h € H. Therefore HNK =[P, H] = C and consequently
[HNK,Q]=1. Clearty H=(HNK)P and hence Q=Z(H). Now,
Q € Syl, (K) and the Burnside theorem ([2] p. 252) implies that K has a normal
p-complement which is clearly a normal p-complement of G.

(b) Let G be a counterexample of minimal order to statement (b) and let R
be the normal p-complement of G whose existence is proved in part (a). By
Corollary 3.3,|K |, # 1 and so R < K. Let N be a minimal normal subgroup of G
contained in R. Then N < K and so (G/N, K/N) has F2. If (G/N, K/N) has
F2(p) we have, by induction, that p=2 and |G/K|=|G/N:K/N|=4, a
contradiction. Therefore, either G/N is a Frobenius group with Frobenius
kernel K/N or G/N is a p-group. In the former case G/K is isomorphic to a
Frobenius complement and hence G/K is either cyclic or generalized quatern-
ion. This contradicts lemma 7 of [1] since G/K=PK/K=P/PNK We
conclude that G/N is a p-group.

It follows that N is a p’-group and we have the following semidirect products:
G = NP, K = N(P N K). We quote from [4] (corollary 2.4 with its proof and
section 3) some facts about G/N. First K/N = Z(G/N) is elementary abelian.
Also G/K = (G/N)/(K/N)is elementary abelian. Further |K/N|=p",|G/K|=
p" withmznzl.

Let (G/N)/(K/N)=(a,)x{a.)x---x{am), where a =aK/N. Then

a¥,at,---, a%, are linearly dependent elements of K/N. We therefore have
at™ab---a5wm=1 for some ai,az -, am wWith 0=a <p and not every

a; =0.1f p#2, the element ai'as*- - - a3z has order p (see [2], p. 183) and lies in
(G/N)\(K/N).

Therefore, if p# 2 we can find an element xN € (G/N)\(K/N), xN of order
p. Hence the p-part of x, x,, lies in G 1K and has order p. By the (F2) property x
acts fixed-point-freely on N and by [2] (p. 337), N is nilpotent. If p =2, N is
solvable. As N is minimal normal we get that in all cases N is an elementary
abelian g-group with g # p. The proof now breaks into several steps.

(1) Ng(P)=P. Proof. Ng(P)= Ny(P)x P and the (F2) property implies that
Ny (P)=1 because no element of P\K commutes with a p’-element.
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(2) Z(G)=1. Proof. Assume Z = Z(G) # 1. By the (F2) property Z(G)is a
p-group so Z = Z(P)< K (see Proposition 3.4). Then (G/Z, K/Z) has (F2) and
G/Z is not a p-group. If (G/Z,K/Z) has F2(p) we get that |G/K|=4, by
induction, a contradiction. Hence G/Z is a Frobenius group with G/K isomor-
phic to its Frobenius complement. As before, this contradicts lemma 7 of [1].

(3) If P# P~ then (P, P*)= G. Proof. Set U =(P,P*). Then U =(U N N)P
with UNN<U. As N is abelian, UNN<IN so that G=NP=NU=
Ns(U N N).Hence UN N < G. As N is minimal normal and U # P, we get that
UNN=N forcing U=s(UNN)P=NP=0G.

(4) If P# P* then PN P® =K. Proof. Suppose not and let x € PN P*\K.
Then (Z(P), Z(P®)) = Cs(x) and by (0) we have L =(P N K, P* N K) = Cg (x).
By the (F2) property L is a p-group and as PN K €8yl,(K) we get that
PNK=P:NK Again (0) implies that Z(P)=Z(P*) so that Z(P)C
Cs ((P, P%)) = Z(G), by (3). This contradicts (2).

(5) If P# P&, then P N P* = 1. Proof. By (0), (2), (3) and (4) we get PN P¢ C
K, so that PNP*=(PNK)N(P*NK)=Z(P)NZ(P*)= Cs(P,P*))=
Z(G)=1.

Steps (1) and (5) imply that G is a Frobenius group with Frobenius
complement P and Frobenius kernel N. By lemma 7 of [1], P/P N K is not cyclic
and hence P is a generalized quaternion group of nilpotency class equal to 2.
Therefore P = Qs. Recall that K/N is an elementary abelian subgroup of
G/N = Qs. Thus |K/N|=2 and | G/K|=4, a final contradiction.

LemMa 5.3. Let (G,K) have (F2) with G/K a p-group. Assume that G
contains a normal subgroup 1# N <K with K/N a p'-group. Then G is a
Frobenius group with Frobenius kernel K.

Proor. As (G/N,K/N) has (F2), Corollary 3.3 implies that G/N is a
Frobenius group with G/K isomorphic to its Frobenius complement. If
(|GIK],|K|)# 1, we get a contradiction to lemma 7 of [1] as in the proof of the
previous lemma. Hence (JG/K|[,|K|)=1 and Lemma 5.3 follows from Corol-
lary 3.3.

Lemma 5.4. Let (G, K) satisfy the assumptions of Theorem 5.1. Assume that
N is a normal p’-Hall subgroup of G. Then p =2 and G/N = Qs.

Proor. Clearly 1< N <K and G/N = P €8yl,(G). By Lemma 5.2, p =2
and |G/K|=4. As (G/N, K/N) has (F2) with G/N nilpotent of class 2 we get
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from [4] (corollary 2.4 and its proof and theorems 3.1, 3.2) that K/N and
(GIN)/(K[N) are elementary abelian with |K/N|=2", |G/K|=2" with 2=
m =2n. Hence n =1, |[K/N|=2 and |P|=|G/N|=8. By Corollary 3.5, P is
not abelian. If P is a dihedral group of order 8, then an involution t € PA\P N K
can be found as G = NP and | P N K| =2. By lemma 4 of {1], K is nilpotent so
that Lemma 5.3 implies that G is a Frobenius group with Frobenius kernel K.
This contradiction yields that P = Qs.

PROOF OF THEOREM 5.1. By Lemma 5.2, G = NT where T € Syl,(G) and N
is a 2’'-group, and by Lemma 5.4, T = Q. Clearly |K : N|=2. We still have to
show that T acts fixed-point-freely on N. Set T =(a,b |a*=b>= (abY =t) and
F=Cn(t). If x € Fthen [x°,t] =[x, t]* = 1 so a induces an automorphism « on
F by conjugation. As a € T\K, «a is fixed-point-free on F (by the F2-property)
and since a*=t, a°=1. By [2], p. 336 a(x) = x"" for all x € F. Similarly we get
x* =x"=x“ =x""for all x € F. This is impossible unless F = 1. Therefore ¢ (as
well as all elements of T\ K) acts fixed-point-freely on N.

The next result (and its proof) is due to the referee.

THEOREM 5.5. Let (G, K) have F2(p) with G/K a p-group, and let P €
Syl, (G) have class 3. If p#2 then G has a normal p-complement.

ProoF. As G = KP, Lemma 3.6 implies that (P,P N K) has F2. By [4]
(lemma 2.1) either PNK =Z(P) or PNK =Z,(P)=[P,P]. As cl(P)=3,
P N K is abelian in both cases. Now the theorem follows from the next theorem.

THEOREM 5.6. Let (G, K) have F2(p) with G/K a p-group, p#2, and let
P €Syl,(G). If PN K is abelian then G has a normal p-complement.

PrOOF. Let G be a counterexample of minimal order. Set Q =P NK,
C = Cs(Z(P)) and H = Ng (J(P)) where J(P) is the Thompson subgroup (see
[5], p- 289 for definition of J(P)). Clearly P C C and P C H so that G = KC =
KH. Lemma 3.6 implies that (C, C N K) and (H, H N K) have F2. By Proposi-
tion 3.2 we have that Z(P)C C N K and so (C/Z(P),(C N K)/Z(P)) has F2. By
induction C/Z(P) has a normal p-complement R/Z(P) (note that if this pair
doesn’t have F2(p), then clearly R/Z(P) exists). As R C C, we have that
Z(P)CZ(R) and so the Schur-Zassenhaus theorem implies that R =
U X Z(P), where U is clearly a normal p-complement of C.

Let’s go back to H. If H < G, then induction implies that H has a normal
p-complement and then by Thompson’s theorem ([5], p. 289) so has G, a
contradiction. Hence H =G so that J(P)< G. As J(P)C C, we get that
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[U,J(P)] = 1. Now the F2-property implies that J(P)C K and hence J(P)C Q.
But Q is abelian so that J(P)= Q and in particular Q < G. It follows that
(G/Q, K/Q) has F2 and since Q € Syl, (K), Corollary 3.3 implies that G/Q is a
Frobenius group with a complement isomorphic to G/K. Thus G/K is cyclic,
contradicting lemma 7 of [1].
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