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GENE R A L I Z E D  FROBENIUS GROUPS 

BY 

D A V I D  CHILLAG AND I. D. M A C D O N A L D  

ABSTRAC~ 

A pair (G, K) in which (3 is a finite group and K "~ G, 1 < K < G, is said to satisfy 
(F2) i f [C~  (x)l = I CoIK (xK)] for all x E G \ K .  First we survey all the examples 
known to us of such pairs in which G is neither a p-group nor a Frobenius group 
with Frobenius kernel K. Then we show that under certain restrictions these are, 
essentially, all the possible examples. 

1. Introduction 

For our purpose, the most pertinent definition of Alan Camina's generaliza- 

tion of Frobenius groups is: 

(F2) the group G has a normal subgroup K, 1 < K < G, such that if x E G \ K 

and z ~ K, then [x, y] = z for some y E G. 

See [1]. All groups in this paper will be finite. 

In [1] Camina presents two main results. One is a character-theoretic 

equivalent (F1) of (F2), which is not to be used in this paper. His other principal 

result states that if (G, K )  has (F2){that is G satisfies (F2) with respect to the 

normal subgroup K)  then either K is a p-group or G / K  is a p-group or else G is 

a Frobenius group with a Frobenius kernel K. 

Knowledge of the p-groups with (F2) is meager. Most of it is contained in [4]. 

In particular, examples not of class 2 are few. All known examples are of class 2 

or 3 or else have K = Z ( G ) ,  the center of G. 

Nevertheless, one might hope for some description of the pairs (G, K)  which 

have (F2) in terms of two seemingly basic components - -  the Frobenius groups, 

and the (F2)-pairs (G, K)  in which G is a p-group. That is the problem to which 

we address ourselves in this paper. 

What results should one seek to prove? In w we survey the examples known 

to us. In what we shall call F2-pairs (G, K)  of type I, in which G / K  is a p-group, 
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we have examples (with p = 2) derived from those Frobenius groups having 

Frobenius complement isomorphic to the quaternion group of order 8. A 

reasonable conjecture would be that (G, K)  o[ type I, are just like this - -  that there 

are no others. 

Pairs of type II have K a p-group. Here the structure is more diversified. 

Clearly, the Sylow p-subgroup p of G must play an essential role. If (G, K) is an 

F2-pair of type II, it is not true that (G, P) must have (F2), though it may well be 
true that P is always normal in G. It might be conjectured that (P, K)  must have 

(F2). It is easy to show (see Lemma (4.2)), that if P is normal in G then (P, K) 

does indeed have (F2). 

We succeeded in proving the above conjectures only under the additional 

conditions that G is p-solvable and P has nilpotency class less than or equal to 2. 

We can prove the conjectures also in the case that K is cyclic. These partial 

answers to the conjectures are consequences of Theorem 4.1, Theorem 5.1 and 

Lemma 5.3. We feel, however, that these partial results together with our 

examples are useful in directing attention to the general problem. 
Before stating one of the results we introduce some notation. Let p be a 

prime. We say that a pair (G, K)  has F2(p) if (G, K) has (F2) with either G / K  or 

K a p-group, but G is neither a p-group nor a Frobenius group with Frobenius 

kernel K. By Camina's theorem if (G, K) has (F2) and G is neither a p-group nor 
a Frobenius group with kernel K, then (G, K) has F2(q) for some prime q. We 

denote by Qg the quaternion group of order 8. The rest of our notation is 

standard. 

The following theorem is a consequence of Theorem 4.1, Theorem 5.1 and 

Lemma 5.3. 

THEOREM. Let ( G, K)  have F2(p) for some prime p. Suppose that either K is 

cyclic, or G is p-solvable with a Sylow p-subgroup of nilpotency class at most 2. 

Then one of the following holds: 
(i) p = 2, G is a Frobenius group with a Frobenius kernel N with I K : N I = 2 

and a Frobenius complement isomorphic to Qs. 

(ii) If  P is a Sylow p-subgroup o[ G, then p ,~ G and (P, K)  has (F2). Further, 

G is a semidirect product G = HP and H K  is a Frobenius group with Frobenius 

kernel K. 

For pair (G, K) that has F2(p) with K a p-group, some other conditions imply 

(ii), see section 4. If G / K  is a p-group in the theorem with the Sylow p-subgroup 

of G having nilpotency class equal to 2, then it can be shown that (i) holds 
without assuming p-solvability (see Theorem 5.1). Also if (G, K) has F2 with 



Vol. 47, 1984 FROBENIUS GROUPS 113 

G / K  a p-group, p ~  2, and the nilpotency class of a Sylow p-subgroup of G is 

equal to 3, it can be proved that G has a normal p-complement. See Theorem 

5.5. 

2. Survey of examples 

In this section we describe the examples known (to us) of pairs (G, K)  that 

have F2(p). Camina states that he knows of only one example. It has I GI = 72 

and I G/KI  = 4; see the remarks following his theorem 2 in [1]. However, it is 

easy to see that any Frobenius group with Frobenius complement isomorphic to 

Q8 gives similar examples with I G/KI  = 4. 

LEMMA 2.1. If (G ,N)  and ( G / N , K / N )  have (F2) then (G ,K)  has (F2). 

PROOF. Let x E G \ K  and z E K. By assumption there exists y l E G and 

n E N such that [x, yl] = zn. Also, there exists y2 E G such that [x, y2] = n Y.'. 

Then: 

[x, y2y~] = [x, yl] [x, y~]Y' = zn. (n Y")~' = z, 

as required. 

EXAMPLE 1. Let G be a Frobenius group with Frobenius kernel N and 

G / N  = Qs. Let K be the subgroup of index 4 in G. Both (G,N)  and 

( G / N , K / N )  have (F2). So by Lemma 2.1 (G ,K)  has (F2). The example is 

(G, K). There are of course many possibilities for N. We can have N = Zp x Zp 

where p is an odd prime with integers a, fl satisfying a2+/32+ 1---0 (mod p) 

and generators of Q8 acting on N according to the matrices (_0 o~), (~ ~). 

Camina's example of order 72 is the same with p = 3. 

We know of no further examples of pairs (G, K)  having F2(p) in which G / K  is 

a p-group. The situation is different with regard to pairs in which K is a p-group. 

The following simple lemma is illuminating. 

LEMMA 2.2. Let G = PT where P, T are subgroups o[ G with Z(P)  = K <~ G 

and K <= T. If (P, K)  has (F2) and if T is a Frobenius group with Frobenius kernel 

K then (G, K)  has (F2). 

PROOF. T a k e x E G \ K a n d z E K .  W e h a v e x = x l x 2 w i t h x ~ E P ,  x2ET.  If 

x2 E K, then x E P and [x, y] = z for some y E P as (P, K)  has (F2). So we may 

take x2 E T \K .  Since T is a Frobenius group with Frobenius kernel K, x2 

induces a regular automorphism of K. So [x:, k] = z for some k E K. Then 

Ix, k ]  = z as Ix, ,  k ]  = 1. 



114 D. CHILLAG AND I. D. MACDONALD Isr. J. Math. 

EXAMPLE 2. Let P = (a, b) be a non-abelian of order 7 3 of exponent 7 and let 

Ho = ix) of order 3. We construct the example G = PHo with P <~ G by having 

a x = a  2, b x = b  2 . N o t e t h a t P ' = Z ( P ) = ( c ) , c = [ a , b ] , c  x = c  ' ( [ 2 ] p .  19) and 

that (c ,x)= H is a Frobenius group with Frobenius kernel K = (c). Trivially 

(P, K)  has (F2). So by Lemma 2.2 (G, K)  has (F2). We even have G a Frobenius 

group with Frobenius kernel P. 

Many variations on Example 2 are possible. The primes 3, 7, can be changed. 

P can be replaced by some more complicated group such as those described in 

[4], etc. 

EXAMPLE 3. Let p be an odd prime and let/3 be a primitive (p - 1)p n-th root 

of unity modulo p,+l (n =>1). Example 3 is G =(a,b la p~ =b (p-I)p"= 1, 

a b = aa) ,  the holomorph of the cyclic group of order p~§ We put 

p=(a,  bp-1), K=(aP") ,  n=(aP~,bp~ 

The requirements of Lemma 2.2 are satisfied, for (P, K)  is a stock example of a 

p-group with (F2) (see introduction of [4]) and H is a standard Frobenius group 

with kernel K. Also, K = Z ( P ) < ~  G. Therefore,  (G,K)  has F2(p). In this 

example we have that P '~ G without (G, P)  having (F2) (unlike Example 2). 

Note that the Frobenius complement (b p") of H even centralizes the nontrivial 

subgroup (b p-~) of P. 

EXAMPLE 4. We start with P = (al, a2, a3, a4), a group of class 2 and expo- 

nent 3 with K = G ' = Z ( G ) = ( c , d ) ,  I G : K I = 3  4, I K I = 3  2, having the com- 

mutator relations: [al, a2] = 1, [al, a3] = c, [al, a4] = d, [a2, a3] = d -~, [a2, a4] = c, 

[a3, a,] = 1. The criterion of theorem 3.1 of [4] easily establishes that (P, K)  has 

(F2). Example 4 is to be G = PQ where O = Ca,/3 [ a 2 =/32 = (a/3)2) ___ Os. We 

shall have P <J G once we have stated how Q acts on P. The action of a is given 

by: al--~ a f  t, a2--~ al, a3--~ a3 ~, a4 --~ a~ ~. It can be checked that automorphism 

of P is defined thereby, and that a acts on K as follows: c -~ d-l ,  d ~ c. The 

action of/3 is given by: al--~ ala~ 1, a:-~ a~l a21, a3---~ a~ 1, a4---~ a4, from which it 

follows that c --~ c-ld -~, d ~ c-ld. It can be verified also that a 2 =/32 = (a/3)z. 
Then KO is a Frobenius group with kernel K (KQ is in fact Camina's 

example of order 72). So by Lemma 2.2 (G, K)  has (F2). 

Example 4 incorporates most of the discouraging features of Example 3, and 

then some more. We have P <1 G but (G, P)  does not have (F2). We have K 

noncyclic. We have the Frobenius complement O of KQ acting on P with 

nontrivial fixed points. Note that G/P is noncyclic in this case. The only role that 
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Q8 plays here is as a Frobenius complement; we do not use the fact that 

(Q, Z ( Q ) )  has (F2). It may be claimed that Example 4 is reasonably complicated. 

We know of no examples of pair (G, K)  having F2(p) with K a p-group, that is 
not described by Lemma 2.2. 

3. Some general preliminary results 

PROPOSITION 3.1. Let G be a group with normal subgroup K, l < K < G. Then 

the following conditions on (G, K)  are equivalent. 

(a) (G ,K)  has (F2). 

(b) If g E G \ K and h E K then g is conjugate in G to gh. 

(c) If x E G \ K, then ] C~ (x)l = [ C~,K (xK)l.  

(d) If aK and bK are conjugate in G / K  and are nontrivial then a and b are 
conjugate in G. 

(e) If  X is an irreducible character of G with Kc" KerX,  then X ( x )  = 0 for all 
x ~ G \ K .  

PROOF. The equivalence of (a) and (b) is trivial and that of (c) and (e) follows 

the proof of corollary (2.24) of [3]. To show that (a) and (c) are equivalent let 

C ~ ( a , K ) = ( x E G I [ a , x ] E K ) ,  f o r a l l a E G \ K .  

The following statements are equivalent for any x~, x2 E C~ (a, K): (i) [a, xl] = 

[a, x2]; (ii) [a,x~x2~] = 1; (iii) Cc(a)x~= C~(a)x2. So, there is a one-to-one 

correspondence between { C c ( a ) x l x ~ C c ( a , K ) }  and the subset of K 

{[a, x ] I x ~ C~ (a, K)}. Hence [ Cc (a, K)  : C~ (a)l =< I K ] and equality occurs if 
and only if for all k @ K there exists x E G with [a, x] = k. Thus, equality occurs 
for all a E G \ K if and only if (G, K)  has (F2). As C~/K (aK)~- C~ (a, K)/K, the 

equivalence of (a) and (c) is established. To see that (a) implies (d) see the proof 
of lemma 1 of [1]. Finally if (d) holds and a E G \ K ,  z E K  then aK = azK 
implies that a is conjugate to az which is statement (b). 

We note that other character-theoretic conditions equivalent to the above can 

be found in [1], explicitly in Theorem 1 and implicitly in its proof. Next we 

generalize Camina's necessary and sufficient condition for an (F2)-pair (G, K)  to 

be G, a Frobenius group with Frobenius kernel K. 

PROPOSITIO~ 3.2. Let (G, K)  have (F2). Then G is a Frobenius group with 

Frobenius kernel K if and only if G splits over K. 

PROOF. To prove the non-trivial part we suppose that (G, K)  has (F2) and 

that G = I lK  with H f'l K --= 1. Take x E H and z E K. By (F2) there exists 
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y E G with [x, y] = z. Write y = y~y2 where y~ E H, y2 ~ K. Then z = [x, y] = 

[x, y~y2] = [x, y2][x, yl] ~2. As K "~ G we get that [x, y2] E K so that [x, y~] E K. 

But x E/4 ,  yl E H. So [x, yl] E H fq K = 1 and consequently [x, y2] = z, y2 E K. 

Thus 

{ [ x , g ] [ g E K } = K  f o r a l l x E G \ K .  

So [x,g]~ 1 for x E G \ K  and g ~ K \ I .  This implies that H acts fixed-point- 

freely on K and the proposition follows. 

COROLLARY 3.3 (Camina [1], proposition 1). Let (G, K) have (F2). Then G is 
a Frobenius group with Frobenius kernel K if and only if (I G/K[, ] K I ) =  1. 

PROOF. Follows from Proposition 3.2 and the Schur-Zassenhaus Theorem. 

PROPOSITION 3.4. Let (G, K) have F2(p) for some prime p and let P be any 
Sylow p-subgroup of G. Then Z(P)<= K. 

PROOF. By Corollary 3.3, I KIp~ 1. Let x E Z(P) and assume that x ~  K. 

Then the number of conjugates of x is a multiple of I KI (by Proposition 3.1, (b)) 

and so IC~(x)l divides IG/KI. It follows that [PI=IC6(x)I~ divides 

I G Ip/I K[p < I P l, a contradiction. 

COROLLARY 3.5. If (G, K) has F2(p) for some prime p and P is a Sylow 
p-subgroup of G, then P is not abelian. 

PROOF. Follows from the previous proposition and the fact that p divides 

(IG/KI,IKI). 
LEMMA 3.6. Let the pair (G, K) have F2 and let G = HK. Then (H, H fq K) 

has F2. 

PROOF. Let a ~ H \ K .  Then [C,(a)[<=[C~(a)I=[C~/K(aK)[ = 
] Cnmnr (a (H N K))[ - [ Cn (a)[. Thus [ Cn (a)[ = 1C,/,nK (a (H N K))[ and the 

lemma follows. 

4. F2(P)-pairs with K a p-group 

In this section we assume that (G, K)  has F2(p) for some prime p. All the 

examples known to us have the structure described by Lemma 2.2. Our main 

result in this section is a theorem giving necessary conditions for a Sylow 

p-subgroup of G to be normal in G and for G to have a structure like in Lemma 

2.2. 
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THEOREM 4.1. Let (G, K) have F2(p) with K a p-group, for some prime p. Let 

P be a Sylow p-subgroup of G. Assume that one of the following conditions holds: 

(i) G is p-solvable and P /K  is abelian. 

(ii) G is p-solvable and the nilpotency class of P is at most 2. 

(iii) K is cyclic. 
Then P <~ G and (P, K) have (F2). Further, G is a semidirect product G = HP 

and H K  is a Frobenius group with Frobenius kernel K. Also in case (ii) we have 

K = Z(P) .  

The proof will be given following a series of lemmas. 

LEMMA 4.2. Let (G, K) have F2(p) with K a p-group, for some prime p. Let 

P E Sylp (O). If P <~ G, then (P, K) has (F2). 

PROOF. Let x E P \ K .  By Proposition 3.1, (c), it suffices to show that 

ICp/K(xK)[=[Cp(x)[. As P<~G we get that P n C ~ ( x ) ~ S y l , ( C ~ ( x ) )  and 

(P/K)  n C~/K(xK) ESylp(C~/K(XK)). Now the (F2)-property implies that 

ICG(x)Ip=[C~/K(xK)Ip and so [ C ~ ( x ) [ p = [ P n C c ( x ) l = [ C p ( x ) [ =  

I C~/K (xK)Ip = I(P/K) n C~/, (xK) l = I Cp/r (xK)l,  as needed. 

LEMMA 4.3. Let ( G, K)  have F2(p) with K a p-group, [or some prime p. I[ T is 

any p'-subgroup of G then TK is a Frobenius group with Frobenius kernel K and 

complement T. In particular every Sylow subgroup of T is either cyclic or 

generalized quaternion. 

PROOF. Let x ~ T and g E K, g ~  1. By Proposition 3.1, (b), x and xg have 

the same order and so [x, g] ~ 1. Therefore, T acts fixed-point-freely on K and 

the lemma follows. 

LEMMA 4.4. Let ( G, K)  have F2(p) with K a p-group, for some prime p. Then 

Op,(G/K) = 1. 

PROOF. Assume the contrary and let L / K  be a minimal normal subgroup of 

G / K  with L / K C O p , ( G / K ) .  As (IL/KI,IKI)=I, L splits over K so that 

L = V K  for some subgroup V. Also V N K = I .  Hence V - ~ L / K  is a p'- 

subgroup of G. By Lemma 4.3 all the Sylow subgroups of G are either cyclic or 

generalized quaternion and hence V is solvable (by the Suzuki-Brauer 

theorem). So V = L / K  is a q-group for some prime q ~  p. In fact V E Sylq (L). 

As L <~ G, the Frattini argument yields that G = No (V )L  = Nc (V)K. 

By Lemma 4.3, VK is a Frobenius group with Frobenius kernel K and 

complement V. In particular V ~  V ~ for all g E K and so K n Nc (V) = 1. We 
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conclude that G = N~ (V)K splits over K. Now Proposition 3.2 implies that 

(G, K)  does not have F2(P) (although it has (F2)), a contradiction. 

LEMMA 4.5. Let (G, K) have F2(p) with K a p-group, for some prime p. Let 
P E Sylp (G). If  px ~ py for some x, y E G, then Z(P  ~) n z ( P  y) = 1. 

PROOF. Assume the contrary and let 1 ~ z E Z(P~)NZ(PY) .  Then z E 

Z((P ~, PY)) n K, by Proposition 3.4. As px fi py, (px, py) is not a p-group. Let T 

be any p'-subgroup of (px, p~). Then T centralizes z E K, contradicting Lemma 

4.3. 

PROOF OF THEOREM 4.1. It suffices to show that P <~ G. For if P <~ G, G splits 

over P so that G = HP, H n P = 1 and H is a p'-subgroup. Then the theorem 

follows from Lemma 4.2, Lemma 4.3 and lemma 2.! of [4]. 

Assume that G is p-solvable, then G/K is p-solvable and as Op,(G/K) = 1 (by 

Lemma 4.4) we get that C~/K (Op (G/K)) <= Op (G/K) (by the Hall-Higman 1.2.3 

Lemma). 

To prove that P<~G in case (i) we note that if P/K is abelian then: 

Op (G/K)  <- P /K  <= C~/r (Op (G/K)) <= Op (G/K). Hence, Op (G/K)  = P/K <~ 
G / K  forcing P ,~ G. 

If (ii) holds, then P/K is abelian as Z ( P ) C  K (by Proposition 3.4). Thus, 

P ,~ G by (i). 

Finally assume that (iii) holds, that is, K is cyclic. Let x ~ G. If P" ~ P, then by 
Lemma 4.5 Z ( P ) n  Z ( P ' ) =  1 and by Proposition 3.4 (Z(P), Z(Px))C_ K, con- 

tradicting the fact that K is a cyclic p-group. Hence P = px and P <~ G. 

5. F2(p)-groups with G / K  a p-group 

In this section we prove the following theorem which, together with Theorem 

4.1 and Lemma 5.3, yields a proof to the Theorem stated in the introduction. 

THEOREM 5.1. Let (G, K) have F2(p) with G / K  a p-group, for some prime p. 

If a Sylow p-subgroup of G has class at most 2, then G is a Frobenius group, the 
Frobenius kernel has index 2 in K and the Frobenius complement is isomorphic to 

Q8. In particular p = 2 and ] G / K I = 4. 

In our first lemma we prove part of Theorem 5.1. 

LEM~A 5.2. Suppose that (G, K) satisfies the assumptions of Theorem 5.1. 

Then (a) G has a normal p-complement and (b) p = 2 and I G /K  1 = 4. 

PROOF. Let P E Sylp (G) and Q = P n K. By Corollary 3.5, the nilpotency 
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class of P is equal to 2. As G = KP, Lemma 3.6 implies that (P, Q)  has F2 and 

using [4] we get that Q = Z(P) .  Also, 

(0) Pg N K = Z ( P  g) for all g E G .  

(a) By the Frattini argument G = HK, where H = N6 (Q). Applying Lemma 

3.6 again yields that (H, H n K)  has F2. Let C = Co (Q). Then P =< C <1H. If 

a E H n K and x E P - H n K, the F2-property of (H, H n K)  implies that 

a = [x, h] for some h E H. Therefore  H O K _-< [P, H I  =< C and consequently 

[ H N K ,  Q ] = I .  Clearly H = ( H N K ) P  and hence Q<=Z(H) .  Now, 

O E Syl, (K)  and the Burnside theorem ([2] p. 252) implies that K has a normal 

p-complement  which is clearly a normal p-complement  of G. 

(b) Let G be a counterexample of minimal order to statement (b) and let R 

be the normal p-complement  of G whose existence is proved in part (a). By 

Corollary 3.3, [ K[p ~ 1 and so R < K. Let N be a minimal normal subgroup of G 

contained in R. Then N < K and so (G/N,  K / N )  has F2. If (G/N,  K / N )  has 

F2(p) we have, by induction, that p = 2  and I G / K I = I G / N : K / N [ = 4 ,  a 

contradiction. Therefore,  either G / N  is a Frobenius group with Frobenius 

kernel K / N  or G / N  is a p-group. In the former case G / K  is isomorphic to a 

Frobenius complement and hence G / K  is either cyclic or generalized quatern- 

ion. This contradicts lemma 7 of [1] since G / K  = P K / K  = P / P  N K. We 

conclude that G / N  is a p-group. 

It follows that N is a p '-group and we have the following semidirect products: 

G = NP, K = N ( P  n K). We quote from [4] (corollary 2.4 with its proof and 

section 3) some facts about G/N.  First K / N  = Z ( G / N )  is elementary abelian. 

Also G / K  = ( G / N ) / ( K / N )  is elementary abelian. Further [ K/N[ = p", [ G / K  I = 

p2m with m=>n_->l. 

Let ( G / N ) / ( K / N )  =(d l )  x(d~) x - - .  • where d, = a~K/N. Then 
af, aP, . .  a v �9 , 2,, are linearly dependent  elements of K/N.  We therefore have 

a ~ l a ~  . . . .  a ~ - = l  for some al, c~2,'..,c~z,, with O - < c ~ < p  and not every 

a~ = O. If p ~ 2, the element a ~' a ~ . . . .  a ~m has order  p (see [2], p. 183) and lies in 

( G / N ) \ ( K / N ) .  

Therefore,  if p ~  2 we can find an element x N  E ( G / N ) \ ( K / N ) ,  x N  of order 

p. Hence the p-part  of x, xp, lies in G \ K and has order  p. By the (F2) property x 

acts fixed-point-freely on N and by [2] (p. 337), N is nilpotent. If p = 2, N is 

solvable. As N is minimal normal we get that in all cases N is an elementary 

abelian q-group with q ~  p. The proof now breaks into several steps. 

(1) No ( P ) = P. Proof. No ( P ) = NN ( e ) • P and the (F2) property implies that 

NN ( P ) =  1 because no element of P \ K commutes with a p '-element.  
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(2) Z ( G ) =  1. Proof. Assume Z = Z ( G ) ~  1. By the (F2) property Z(G)  is a 
p-group so Z <= Z(P) < K (see Proposition 3.4). Then (G/Z, K /Z)  has (F2) and 

G / Z  is not a p-group. If ( G / Z , K / Z )  has F2(p) we get that [G/K]=4, by 

induction, a contradiction. Hence G / Z  is a Frobenius group with G/K isomor- 

phic to its Frobenius complement. As before, this contradicts iemma 7 of [1]. 

(3) If P~P~ then ( P , P ~ ) =  G. Proof. Set U=(P,P ' ) .  Then U = ( U A N ) P  
with U N N < 1 U .  As N is abelian, U A N < ~ N  so that G = N P = N U < =  

No(U O N). Hence U n N <] G. As N is minimal normal and U ~  P, we get that 

U N N = N  forcing U = ( U A N ) P = N P = G .  

(4) If P ~  P~ then P n Pg <= K. Proof. Suppose not and let x ~ P n P~ \K. 
Then (Z(P), Z(P~)) <= Ca (x) and by (0) we have L = (P n K, P~ O K)  =< C~ (x). 
By the (F2) property L is a p-group and as P n K E Sylp(K) we get that 

P A K = P  ~ A K. Again (0) implies that Z ( P ) = Z ( P  ~) so that Z(P)C_ 
C~((P, PS)) = Z(G),  by (3). This contradicts (2). 

(5) If P ~  Pg, then P n Pg = 1. Proof. By (0), (2), (3) and (4) we get P n P~ _c 

K, so that P N P g = ( P A K ) A ( P S O K ) = Z ( P ) A Z ( P S ) < - c ~ ( ( P ,  Pg)) = 

Z(G)  = 1. 

Steps (1) and (5) imply that G is a Frobenius group with Frobenius 

complement P and Frobenius kernel N. By lemma 7 of [1], P/P n K is not cyclic 

and hence P is a generalized quaternion group of nilpotency class equal to 2. 

Therefore P ~ 08. Recall that K / N  is an elementary abelian subgroup of 

G/N = 08. Thus I K / N  I = 2 and I G/KI = 4, a final contradiction. 

LEMMA 5.3. Let (G, K) have (F2) with G/K  a p-group. Assume that G 
contains a normal subgroup 1 ~ N < K with K / N  a p'-group. Then G is a 
Frobenius group with Frobenius kernel K. 

PROOF. As (G/N ,K/N)  has (F2), Corollary 3.3 implies that G / N  is a 

Frobenius group with G/K isomorphic to its Frobenius complement. If 

(I G/KI,  I K l) ~ 1, we get a contradiction to lemma 7 of [1] as in the proof of the 

previous lemma. Hence (I G/KI,  I K I ) =  1 and Lemma 5.3 follows from Corol- 

lary 3.3. 

LEMMA 5.4. Let (G, K) satisfy the assumptions of Theorem 5.1. Assume that 
N is a normal p'-Hall subgroup of G. Then p = 2 and G /N  -~ O8. 

PROOF. Clearly I < N < K  and G/N-~PESyI~(G) .  By Lemma 5.2, p --2 

and I G/K[ = 4. As (G/N, K/N)  has (F2) with G / N  nilpotent of class 2 we get 
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f rom [4] (corol lary 2.4 and its p roof  and theo rems  3.1, 3.2) that  K / N  and 

(G/N) / (K /N)  are e l emen ta ry  abel ian with I K/NI = 2 ~ IG/gl--2" with 2 = 

m _-> 2n. H e n c e  n = 1, I K/NI  = 2 and I PI = I G/NI = 8. By Corol la ry  3.5, P is 

not  abelian.  If P is a dihedral  g roup  of order  8, then  an involut ion t E P \ P n K 

can be found  as G = NP and I P n K I = 2. By l e m m a  4 of [1], K is n i lpotent  so 

that  L e m m a  5.3 implies that  G is a Frobenius  group  with Froben ius  kernel  K. 

This  contradic t ion  yields that  P ~ Q8. 

PROOF OF THEOREM 5.1. By L e m m a  5.2, G = NT where  T E Syl2(G) and N 

is a 2 ' -group,  and by L e m m a  5.4, T = Qs. Clear ly I K : N I -- 2. W e  still have  to 

show that  T acts f ixed-point-f reely  on N. Set T = (a, b I a2 = b 2 = (abi 2 = t) and 

F = CN(t). If x E F then [x ", t] = [x, t] ~ = 1 so a induces an a u t o m o r p h i s m  a on 

F by conjugat ion.  As  a E T \ K, a is f ixed-point- f ree  on F (by the F2-proper ty )  

and since a 2 = t, t~ 2 = 1. By [2], p. 336 a(x)  = x 1 for  all x E F. Similarly we get 

x a = x b = x ab = x -1 for  all x E F. This is impossible  unless F = 1. T h e r e f o r e  t (as 

well as all e l ements  of T \ K )  acts f ixed-point-f reely  on N. 

The  next  result  (and its proof)  is due to the referee .  

THEOREM 5.5. Let (G,K)  have F2(p)  with G / K  a p-group, and let P E 

Sy lp (G)  have class 3. If p ~  2 then G has a normal p-complement. 

PROOF. As  G = KP, L e m m a  3.6 implies that  (P, P n K )  has F2. By [4] 

( l emma 2.1) e i ther  P n K = Z(P)  or P n K = Z2(P) = [P, P] .  As  c l (P)  = 3, 

P n K is abel ian  in bo th  cases. Now the t h e o r e m  follows f rom the next  t heo rem.  

THEOREM 5.6. Let (G,K)  have F2(p)  with G / K  a p-group, p ~  2, and let 

P E Sylp(G) .  I[ P n K is abelian then G has a normal p-complement. 

PROOF. Le t  G be. a coun t e r example  of minimal  order .  Set Q = P n K, 

C = C~ (Z(P)) and H = N~ (J(P)) where  J(P) is the T h o m p s o n  subgroup  (see 

[5], p. 289 for  definit ion of J(P)). Clearly P C_ C and P C_ H so that  G = KC = 

KH. L e m m a  3.6 implies  that  (C, C n K )  and (H, H n K )  have  F2. By Proposi-  

t ion 3.2 we have  that  Z(P)  C_ C n K and so (C/Z(P),  (C n K) /Z(P))  has F2. By 

induct ion C/Z(P)  has a normal  p - c o m p l e m e n t  R / Z ( P )  (note that  if this pair  

doesn ' t  have  F2(p) ,  then  clearly R / Z ( P )  exists). As  R C_ C, we have  that  

Z(P)C_Z(R)  and so the S c h u r - Z a s s e n h a u s  t h e o r e m  implies that  R =  

U • Z(P),  where  U is clearly a no rma l  p - c o m p l e m e n t  of C. 

Le t ' s  go back  to H.  If H < G, then  induct ion implies  that  H has a no rma l  

p - c o m p l e m e n t  and then  by T h o m p s o n ' s  t h e o r e m  ([5], p. 289) so has G, a 

contradic t ion.  H e n c e  H = G so that  J(P)<~ G. As J(P)C_ C, we get that  
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[U, J (P)]  = 1. Now the F2-property implies that J(P)C_ K and hence J(P)C_ Q. 
But Q is abelian so that J(P)= Q and in particular Q <1 G. It follows that 

(G/Q, K/Q) has F2 and since Q ~ Sylp (K), Corollary 3.3 implies that G/O is a 

Frobenius group with a complement isomorphic to G/K. Thus G/K is cyclic, 

contradicting lemma 7 of [1]. 
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